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Abstract. A recently developed dynamical mean-field theory, in the iterated perturbation theory
approximation, was used as a basis for the construction of a ‘first-principles’ calculation scheme
for investigating the electronic structure of strongly correlated electron systems. This scheme is
based on the local density approximation (LDA) within the framework of the linearized muffin-
tin orbitals (LMTO) method. The classical example of the doped Mott insulator La1−xSrxTiO3

was studied by the new method, and the results showed qualitative improvement when compared
with experimental photoemission spectra.

1. Introduction

The accurate calculation of the electronic structure of materials starting from first principles
is a challenging problem in condensed-matter science, since, unfortunately, except for
small molecules, it is impossible to solve many-electron problems without imposing severe
approximations.

For materials for which the kinetic energy of the electrons is more important than the
Coulomb interactions, the most successful first-principles method is the density functional
theory (DFT) within the local (spin-) density approximation (L(S)DA) [1], in which the
many-body problem is mapped onto a non-interacting system with a one-electron exchange–
correlation potential approximated by that of the homogeneous electron gas.

It is now generally accepted that the spin-density functional theory within the local
density approximation is a reliable starting point for first-principles calculations of material
properties of weakly correlated solids (for a review, see [2]). The situation is very different
when we consider more strongly correlated materials (systems containing f and d electrons).
In a very simplified view, the LDA can be regarded as a Hartree–Fock approximation with
an orbital-independent (averaged) one-electron potential. This approximation is very crude
for strongly correlated systems, where the on-site Coulomb interaction between d (or f )
electrons of transition metal (or rare-earth metal) ions (Coulomb parameterU ) is strong
enough to overcome the kinetic energy, which is of the order of the band widthW . As
a result, the LDA gives a qualitatively wrong answer even for such simple systems as
Mott insulators with integer numbers of electrons per site (the so-called ‘undoped Mott
insulators’). For example, the insulators CoO and La2CuO4 are predicted to be metallic by
the LDA.
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The search for a ‘first-principles’ computational scheme for the physical properties of
strongly correlated electron systems that is as successful as the LDA is for weakly correlated
systems is very important, in view of the considerable significance of this class of materials,
and is an area of intensive current research. Notable examples of first-principles schemes
that have been applied to strongly correlated electron systems are the LDA+ U method
[3], which is akin to the orbital–spin-unrestricted Hartree–Fock method using a basis of
LDA wave functions,ab initio unrestricted Hartree–Fock calculations [4], and the use of a
constrained LDA to derive model parameters of model Hamiltonians which are then treated
by means of the exact diagonalization of small clusters or other approximations [5].

Many interesting effects, such as orbital and charge ordering in transition metal
compounds, were successfully described by the LDA+U method [6]. However, for strongly
correlated metals, the Hartree–Fock approximation is too crude, and more sophisticated
approaches are needed.

Recently, a dynamical mean-field theory was developed [7] that is based on the mapping
of lattice models onto quantum impurity models subject to a self-consistency condition.
The resulting impurity model can be solved by means of various approaches (e.g. quantum
Monte Carlo, exact diagonalization), but the most promising for possible use in a ‘realistic’
calculation scheme is the iterated perturbation theory (IPT) approximation, which was
proved to give results in a good agreement with more rigorous methods.

This paper is the first in a series, in which we plan to integrate recent developements
of the dynamical mean-field approach with state-of-the-art band-structure calculation
techniques, to generate an‘ab initio’ scheme for the calculation of the electronic structure
of correlated solids. For a review of the historical development of the dynamical mean-field
approach in its various implementations, see reference [7]. In this paper, we implement the
dynamical mean-field theory in the iterated perturbation theory approximation, and carry
out band-structure calculations using a LMTO basis. The calculational scheme is described
in section 2. We present results obtained by applying this method to La1−xSrxTiO3, which
is a classical example of a strongly correlated metal.

2. The calculation scheme

In order to be able to implement the achievements of the Hubbard model theory within
the LDA, one needs a method that could be mapped onto the tight-binding model. The
linearized muffin-tin orbitals (LMTO) method within the orthogonal approximation [8] can
be naturally presented as tight-binding calculation scheme (in a real-space representation):

HLMTO =
∑

ilm,j l′m′,σ

(δilm,j l′m′εil n̂ilmσ + tilm,j l′m′ ĉ†ilmσ ĉj l′m′σ ) (1)

(i is the site index, andl andm are orbital indices).
As we have mentioned above, the LDA one-electron potential is orbital independent,

and Coulomb interaction between d electrons is taken into account in this potential in an
averaged way. In order to generalize this Hamiltonian by including Coulomb correlations,
one must add an interaction term:

Hint = 1

2

∑
ilmm′σσ ′mσ 6=m′σ ′

Uiln̂ilmσ n̂ilm′σ ′ . (2)

We have temporarily neglected the exchange terms and the dependence of the Coulomb
parameterU on the particular pair of orbitalsmm′. Throughout the following, we will
assume that only for one shell,ld , of one type of atom,id (for example, d orbitals of
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the transition metal ions), does the Coulomb interaction need to be taken into account
(Uil = Uδil,id ld ), and in the following the indicesil will be omitted. All other orbitals
will be considered as resulting in itinerant bands, and to be well described by the LDA.
Such separation of the electronic states into localized and itinerant is close in spirit to the
Anderson model.

To avoid double counting, one must at the same time subtract the averaged Coulomb
interaction energy term, which we assume is present in the LDA. Unfortunately, there
is no direct connection between the Hubbard model and the LDA (because the LDA is
based on the homogeneous electron gas theory and not on the localized atomic-type orbitals
representation), and it is impossible to express the LDA energy rigorously through the d–d
Coulomb interaction parameterU . However, it is known that the LDA total energy as a
function of the total number of electrons is a good approximation, and the value of the
Coulomb parameterU obtained in the LDA calculation agrees well with experimental data
and the results from the more rigorous calculations [9]. This leads us to suggest that a good
approximation for the LDA part of the Coulomb interaction energy is

ECoul = 1

2
Und(nd − 1) (3)

(nd =
∑

mσ nmσ is the total number of d electrons).
In the LDA Hamiltonian,εd has the meaning of the LDA one-electron eigenvalue for

d orbitals. It is known that in the LDA the eigenvalue is the derivative of the total energy
over the occupancy of the orbital:

εd = d

dnd
ELDA. (4)

If we want to introduce newε0
d where d–d Coulomb interaction is excluded, we must

define them as

ε0
d =

d

dnd
(ELDA − ECoul) = εd − U

(
nd − 1

2

)
. (5)

Then the new Hamiltonian will have the form

H = H 0+Hint
H 0 =

∑
ilm,j l′m′,σ

(δilm,j l′m′ε
0
il n̂ilmσ + tilm,j l′m′ ĉ†ilmσ ĉj l′m′σ ). (6)

In reciprocal space, the matrix elements of the operatorH 0 are

H 0
qlm,q ′l′m′(k) = HLDA

qlm,q ′l′m′(k)− δqlm,q ′l′m′δql,id ldU
(
nd − 1

2

)
(7)

(q is an index of the atom in the elementary unit cell).
In the dynamical mean-field theory, the effect of Coulomb correlation is described by

the self-energy operator in the local approximation. The Green function is

Gqlm,q ′l′m′(iω) = 1

VB

∫
dk [iω + µ−H 0

qlm,q ′l′m′(k)− δqlm,q ′l′m′δql,id ld6(iω)]−1 (8)

([· · ·]−1 means inversion of the matrix, integration is over the Brillouin zone,µ is the
chemical potential, andVB is the volume of the Brillouin zone).

In the following, we will consider the paramagnetic case and an orbitally and spin-
degenerate system, so that the self-energy6(iω) does not depend on the orbital and spin
indices. One can define the effective Anderson model Green function through

G(iω) = Gid ldm,id ldm(iω) = (iω + µ−1(iω)−6(iω))−1 (9)
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where1(iω) is the effective-impurity hybridization function. The effective-medium ‘bath’
Green functionG0 is defined as

G0(iω) = (iω + µ̃−1(iω))−1 = (G−1(iω)+6(iω)+ µ̃− µ)−1 (10)

(µ̃ is the chemical potential of the effective medium).
The chemical potential of the effective medium̃µ is varied to satisfy the Luttinger

theorem condition:
1

β

∑
iωn

eiωn0+G(iωn)
d

d(iωn)
6(iωn) = 0. (11)

In the iterated perturbation theory approximation, theansatzfor the self-energy is based
on the second-order perturbation theory term calculated with the ‘bath’ Green functionG0:

60(iωs) = −(N − 1)U2 1

β2

∑
iωn

∑
ipm

G0(iωm + ipn)G
0(iωm)G

0(iωs − ipn). (12)

N is the degeneracy of the orbitals, including spin;β = 1/kT ; the Matsubara frequencies
ωs = (2s + 1)π/β; pn = 2nπ/β; ands andn are integers.

The term60 is renormalized to ensure the correct atomic limit:

6(iω) = Un(N − 1)+ A60(iω)

1− B60(iω)
(13)

(n is the orbital occupation number:n = (1/β)∑iωn eiωn0+G(iωn)) where

B = U [1− (N − 1)n] − µ+ µ̃
U2(N − 1)n0(1− n0)

(14)

A = n[1− (N − 1)n] + (N − 2)D[n]

n0(1− n0)
(15)

n0 = 1

β

∑
iωn

eiωn0+G0(iωn) (16)

and the correlation functionD[n] ≡ 〈n̂n̂〉CPA is calculated using the coherent potential
approximation (CPA) for the Green function, with the parameterδµ chosen to preserve the
orbital occupation numbern:

GCPA(iω) = [1− n(N − 1)]

iω + µ−1(iω)+ δµ +
n(N − 1)

iω + µ−1(iω)− U + δµ (17)

n = 1

β

∑
iωn

eiωn0+GCPA(iωn) (18)

D[n] = n
∑
iωn

eiωn0+ 1

iω + µ−1(iωn)− U + δµ. (19)

The Matsubara frequency convolution in (12) was performed with the time variables
representation using a fast-Fourier-transform algorithm for the transition from energy to
time variables and back:

G0(τ ) = 1

β

∑
iωn

e−iωnτG0(iωn) (20)

6(τ) = −(N − 1)U2G0(τ )G0(τ )G0(−τ) (21)

60(iωn) =
∫ β

0
dτ eiωnτ6(τ). (22)
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The serious problem is that of how to perform the integration ink-space over the
Brillouin zone. For this we used the generalized Lambin–Vigneron algorithm [10]. We
define a new matrixH(k, z) as

H(k, z) = H 0(k)+6(z) (23)

wherez is the complex energy, and the term6(z) is added only to diagonal elements of
theH -matrix corresponding to d orbitals. In this matrix notation, the Green function is

G(z) = 1

VB

∫
dk [z−H(k, z)]−1. (24)

After diagonalization, the matrixH(k, z) can be expressed in terms of the diagonal matrix
of its eigenvaluesD(k, z) and its eigenvector matrixU(k, z):

H(k, z) = U(k, z)D(k, z)U−1(k, z) (25)

and Green function:

G(z) = 1

VB

∫
dk U(k, z)[z−D(k, z)]−1U−1(k, z). (26)

A particular matrix element of the Green function is calculated as

Gij (z) =
∑
n

1

VB

∫
dk

Uin(k, z)U
−1
nj (k, z)

z−Dn(k, z)
. (27)

In the analytical tetrahedron method, the irreducible wedge of the Brillouin zone is
divided into a set of tetrahedra, and the total integral is calculated as a sum over the
tetrahedra. To perform the integration over a given tetrahedron with its four corners at
the positions given by the vectorski (i = 1, 2, 3, 4), the denominator of the fraction in
equation (27) is interpolated as a linear function ink-space. In the result, the integral over
one tetrahedron is expressed in terms of the values of the numerator and denominator at the
corners of the tetrahedron:∑
n

1

VB

∫
v

dk
Uin(k, z)U

−1
nj (k, z)

z−Dn(k, z)
=
∑
n

4∑
i=1

rni Uin(ki , z)U
−1
nj (ki , z)

v

VB
(28)

wherev is the tetrahedron volume, and

rni = (z−Dn(ki , z))
2
/( ∏

k(6=i)
(Dn(kk, z)−Dn(ki , z))

)
+

∑
j (6=i)

[
(z−Dn(kj , z))

3
/( ∏

k(6=j)
(Dn(kk, z)−Dn(kj , z))

)]
× ln[(z−Dn(kj , z))/(z−Dn(ki , z)]

(Dn(ki , z)−Dn(kj , z))
. (29)

The self-energy6(iωn) and Green functionG(iωn) are calculated at the imaginary
Matsubara frequencies iωn = iπ(2n+ 1)/β. It is sufficient to calculate expectation values,
such as the orbital occupanciesn, but in order to calculate spectral properties one needs
to know the Green function on the real axis. The real-axis equivalent of equations (12) is
much more complicated and hard to implement numerically than the Matsubara frequencies
version. It is much more convenient to perform analytical continuation from imaginary
energy values to the real ones. For such continuation, we have used a Padé approximant
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Figure 1. Non-interacting (U = 0) total and partial densities of states (DOS) for LaTiO3.

algorithm [11]. If one has a set of complex energieszi (i = 1, . . . ,M) and a set of values
of the analytical functionui , then the approximant is defined as a continued fraction:

CM(z) = a1

1+ a2(z− z2)

1+ · · · aM(z− zM−1)

1

(30)

where the coefficientsai are to be determined in such a way that

CM(zi) = ui i = 1, . . . ,M. (31)

The coefficientsai are then given by the recursion

ai = gi(zi) g1(zi) = ui i = 1, . . . ,M (32)

gp(z) = gp−1(zp−1)− gp−1(z)

(z− zp−1)gp−1(z)
p > 2. (33)

The recursion formula for the continued fraction finally yields

CM(z) = AM(z)/BM(z) (34)

where

An+1(z) = An(z)+ (z− zn)an+1An−1(z)

Bn+1(z) = Bn(z)+ (z− zn)an+1Bn−1(z) (35)

and

A0 = 0 A1 = a1 B0 = B1 = 1.

We have found that the most convenient method is to use analytical continuation not for
the Green functionG but only for the the self-energy6, and then to calculateG directly
on the real axis through the Brillouin zone integration (28).
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Figure 2. The partial (t2g) DOS obtained from IPT calculations, in comparison with the non-
interacting DOS.

3. Results

We have applied the above-described calculation scheme to the doped Mott insulator
La1−xSrxTiO3. LaTiO3 is a Pauli paramagnetic metal at room temperature, and below
TN = 125 K it is an antiferromagnetic insulator with a very small gap value (0.2 eV).
Doping with a very small amount of Sr (a few per cent) leads to the transition to a para-
magnetic metal with a large effective mass. As photoemission spectra of this system also
show a strong deviation from the non-interacting-electrons picture, La1−xSrxTiO3 is regarded
as an example of a strongly correlated metal.

The crystal structure of LaTiO3 is that of a slightly distorted cubic perovskite. The Ti
ions have octahedral coordination of the oxygen ions, and the t2g–eg crystal-field splitting
of the d shell is strong enough to survive in the solid. In figure 1, the total and partial DOS
of paramagnetic LaTiO3 are presented, as obtained from LDA calculations (the LMTO
method). At 3 eV above the O 2p band, there is a Ti 3d band split into t2g and eg subbands,
which are well separated from each other. The Ti4+ ions have the d1 configuration, and the
t2g band is one sixth filled.

As only the t2g band is partially filled, and the eg band is completely empty, it is
reasonable to consider Coulomb correlations between t2g electrons only, and the degeneracy
factor N in equation (12) is equal to 6. The value of the Coulomb parameterU was
calculated by the supercell procedure [9], regarding just the t2g electrons as localized ones,
and allowing the eg electrons to participate in the screening. This calculation resulted in a
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Figure 3. Experimental and theoretical photoemission spectra of La1−xSrxTiO3 (x = 0.06).

value of 3 eV. As the localization must lead to an energy gap between electrons with the
same spin, the effective Coulomb interaction will be reduced by the value of the exchange
parameterJ = 1 eV. So we have used the effective Coulomb parameterUeff = 2 eV. The
results of the calculation forx = 0.06 (doping with Sr was imitated by decreasing the total
number of electrons as in the rigid-band approximation for alloys) are presented in the form
of the t2g DOS in figure 2. Its general form is the same as for the model calculations: a
strong quasiparticle peak at the Fermi energy, and incoherent subbands below and above it
corresponding to the lower and upper Hubbard bands.

The appearance of the incoherent lower Hubbard band in our DOS leads to qualitatively
better agreement with photoemission spectra. In figure 3, the experimental XPS for
La1−xSrxTiO3 (x = 0.06) [12] is presented with the non-interacting (LDA) and interacting
(IPT) occupied DOS broadened to imitate the experimental resolution. The main correlation
effect, namely the simultaneous presence of coherent and incoherent bands in the XPS,
is successfully reproduced in the IPT calculation. However, as one can see, the IPT
overestimates the strength of the coherent subband.

In this article, we have presented results for the one-particle spectral function at a specific
density. Before any serious comparison with experiment can be made, one has to perform
a convolution with the instrumental resolution function, and take into account the possible
effects of surface disorder which can be present in the sample. For model Hamiltonians, a
dynamical mean-field study of models of this kind has recently been performed by Sarma
et al [13].

4. Conclusions

In this article, we have described how one can interface methods for realistic band-structure
calculations with the recently developed dynamical mean-field technique to obtain a fully
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‘ab initio’ method for calculating the electronic spectra of solids.
In comparison with earlier calculations, this work introduces several methodological

advances: the dynamical mean-field equations are incorporated into a realistic electronic
structure calculation scheme, with parameters obtained from a first-principles calculation
and with the realistic orbital degeneracy of the compound.

To check our method, we applied it to doped titanates, for which a large body of model
calculation studies using dynamical mean-field theory are available. The results are very
encouraging, considering the experimental uncertainties of the analysis of the photoemission
spectra of these compounds.

We have used two relatively accurate (but still approximate) methods for the solution
of the band-structure aspect and the correlation aspects of this problem: the LMTO in the
ASA approximation, and the IPT approximation. In principle, one can use other techniques
for handling these two aspects of the problem, and further applications to more complicated
materials are necessary to determine the degree of quantitative accuracy of the method.
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